Strongly solid group factors which are not interpolated free group factors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Solid Group Factors Which Are Not Interpolated Free Group Factors

We give examples of non-amenable ICC groups Γ with the Haagerup property, weakly amenable with constant Λcb(Γ) = 1, for which we show that the associated II1 factors L(Γ) are strongly solid, i.e. the normalizer of any diffuse amenable subalgebra P ⊂ L(Γ) generates an amenable von Neumann algebra. Nevertheless, for these examples of groups Γ, L(Γ) is not isomorphic to any interpolated free group...

متن کامل

Interpolated Free Group Factors

The interpolated free group factors L(Fr) for 1 < r ≤ ∞, (also defined by F. Rădulescu) are given another (but equivalent) definition as well as proofs of their properties with respect to compression by projections and free products. In order to prove the addition formula for free products, algebraic techniques are developed which allow us to show R∗R ∼= L(F2) where R is the hyperfinite II1–fac...

متن کامل

Examples of Strongly Solid Group Factors Which Are Not Isomorphic to L(f T )

We give examples of non-amenable ICC groups Γ with the Haagerup property, weakly amenable with constant Λcb(Γ) = 1, for which we show that the associated II1 factors L(Γ) are strongly solid, i.e. the normalizer of any diffuse amenable subalgebra P ⊂ L(Γ) generates an amenable von Neumann algebra. Nevertheless, for these examples of groups Γ, L(Γ) is not isomorphic to any interpolated free group...

متن کامل

Which elements of a finite group are non-vanishing?

‎Let $G$ be a finite group‎. ‎An element $gin G$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $G$‎, ‎$chi(g)neq 0$‎. ‎The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$‎, ‎is an undirected graph with‎ ‎vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G‎, ‎ tin T}$‎. ‎Let ${rm nv}(G)$ be the set‎ ‎of all non-vanishi...

متن کامل

Finite Free Entropy and Free Group Factors

We show the existence of noncommutative random variables with finite free entropy but which do not generate a free group factor. In particular, this gives an example of variables X1, . . . , Xn such that δ(X1, . . . , Xn) = n while W ∗(X1, . . . , Xn) ≇ L(Fn).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2009

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-009-0417-6